

Alfa Laval Unique Mixproof Process

Double Seat valves

Introduction

The Alfa Laval Unique Mixproof Process valve is a versatile, double block-and-bleed valve that enables the simultaneous flow of two products or fluids through the same valve in valve matrices and pipelines without the risk of crosscontamination. This double seat valve with seat lift is a compact, cost-effective version of the premium Alfa Laval Unique Mixproof valve. High cleanability, the ability to withstand pressure peaks and its fit-for-purpose components make this valve a great addition to dairy, food and beverage applications. It comes in various sizes to meet your fundamental hygienic processing requirements.

Applications

The Alfa Laval Unique Mixproof Process is designed for continuous flow management and process safety in hygienic processes where product safety is at the top of the agenda across the dairy, food, beverage and many other industries.

Benefits

- Get the product safety you need by eliminating the risk of cross-contamination and product loss while ensuring efficient cleaning
- Enhance the reliability and flexibility of your process setup with proven valve technology tailored to your specific production needs, minimize the risk of unplanned downtime while spending as little time and resources as possible on routine maintenance
- Limit your environmental impact with significantly reduced water and CIP media consumption, no spillage and eliminated product loss
- Predefined and available in various sizes to meet your fundamental hygienic processing requirements

Standard design

The valve comprises a series of base components, including a proven valve body, valve plug and seals, maintenance-free actuator, and seat lift cleaning. Leakage detection holes enable visual inspection without requiring valve disassembly, alerting operators of the need for parts wear replacement. Few straightforward, moveable parts contribute to reliable operation and reduced maintenance costs. The valve can also be fitted with an Alfa Laval ThinkTop sensing and control unit.

Working principles

The Alfa Laval Unique Mixproof Process valve is a normally closed (NC) valve controlled remotely using compressed air. The valve has two independent plugs and seals to separate the liquids; the space between the seals forms a leakage chamber at atmospheric pressure under every operating condition. Leakage rarely occurs, but should it happen, the product flows into the leakage chamber and drains through the outlet at the bottom of the chamber for easy detection.

When the valve is open, the leakage chamber is closed. The product then flows from one line to the other. The well-known radial design of the valve ensures that virtually no product spillage occurs during valve operation.

Certificates

Authorized to carry the 3A symbol

Technical Data

1000 kPa (10 bar) / 145 psi	
Full Vacuum	
600-800 kPa (6-8 bar) / 87-116 psi	
	Full Vacuum

EPDM -5 °C to +125 °C / 23 °F to 257 °F HNBR -5 °C to +125 °C / 23 °F to 257 °F

ATEX	
Classification:	II 2 G D ¹
¹ This equipment is outside the scope of the direc	re 2014/34/EU and must not carry a separate CE marking according to the directive as the equipment has no own ignition source

Physical Data

1.4404 (316L)	
1.4301 (304)	
	- (/

Surface finish	
External (semi-bright):	Ra< 1.6 µm / Ra< 64 µi
Internal (polished):	Ra< 0.8 µm / Ra< 32 µi

Product wetted seals	
Sealing Material:	EPDM, FPM, HNBR

Other seals	
Actuator seals:	NBR
Guide strip:	PTFE

Valve body combination

12-00

21-00

Valve body combinations, example: type 11-00

1 Number of ports - lower valve body

1 Number of ports - upper valve body

00 Angle between

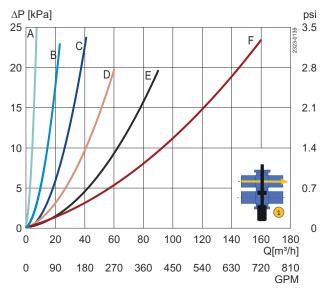


Figure 1. Pressure drop/capacity diagram, upper body

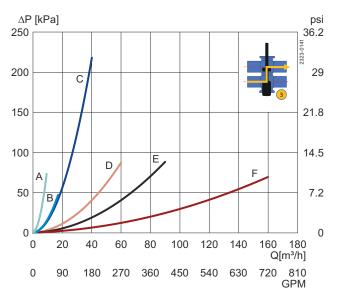


Figure 3. Pressure drop/capacity diagram, between bodies

- $\begin{array}{l} A = DN25 \ / \ ISO \ 25 \ / \ 1" \\ B = DN40 \ / \ ISO \ 38 \ / \ 11{\!\!\!/}{2"} \\ C = DN50 \ / \ ISO \ 51 \ / \ 2" \\ D = DN65 \ / \ ISO \ 63.5 \ / \ 21{\!\!\!/}{2"} \end{array}$
- E = DN80 / ISO 76.1 / 3"
- F = DN100 / ISO 101.6 / 4"

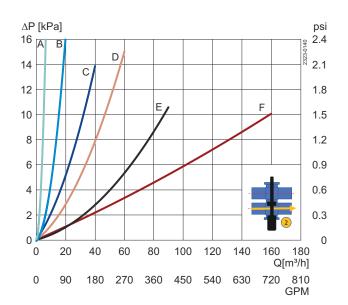


Figure 2. Pressure drop/capacity diagram, lower body

Air and CIP consumption

Between bodies

Size		DN/OD						DN					
ISO/DIN		25 mm / 1"	38 mm / 1½"	51 mm / 2"	63.5 mm / 2½"	76.1 mm / 3"	101.6 mm / 4"	25	40	50	65	80	100
Kv-value	[m³/h]	10.2	23.3	26.9	64.3	95.8	194.5	10.2	23.3	26.9	64.3	95.8	194.5
Cv-value	[GPM/psi]	11.8	26.9	31.1	74.3	110.8	224.8						

Kv-value / Cv-value

Size		DN/OD						DN					
ISO/DIN		25 mm / 1"	38 mm / 1½"	51 mm / 2"	63.5 mm / 2½"	′ 76.1 mm / 3"	101.6 mm / 4"	25	38	50	65	80	100
Upper Seat-lift	[m³/h]	0.93	0.91	1.28	1.68	1.92	2.69	0.93	0.91	1.28	1.68	1.92	2.69
Opper Seat-IIIt	[GPM/psi]	1.08	1.06	1.48	1.95	2.23	3.11						
Lower Cost push	[m ³ /h]	0.78	0.78	0.81	1.33	1.90	1.92	0.78	0.78	0.81	1.33	1.90	1.92
Lower Seat-push	[GPM/psi]	0.91	0.91	0.94	1.53	2.19	2.22						

Air	consumption	
-----	-------------	--

	DN/OD						DN					
	25 mm / 1"	38 mm / 1½"	51 mm / 2"	63.5 mm / 2½"	76.1 mm / 3"	101.6 mm / 4"	25	38	50	65	80	100
[L]	0.02	0.02	0.02	0.02	0.08	0.08	0.02	0.02	0.02	0.02	0.08	0.08
[in ³]	1.41	1.41	1.41	1.41	4.70	4.70						
[L]	0.97	0.97	0.97	0.97	2.76	2.76	0.97	0.97	0.97	0.97	2.76	2.76
[in³]	59.23	59.23	59.23	59.23	168.38	168.38						
[L]	0.55	0.55	0.55	0.55	1.31	1.31	0.55	0.55	0.55	0.55	1.31	1.31
[in ³]	33.78	33.78	33.78	33.78	79.86	79.86						
	[in ³] [L] [in ³] [L]	25 mm / 1" [L] 0.02 [in³] 1.41 [L] 0.97 [in³] 59.23 [L] 0.55	25 mm / 1" 38 mm / 1½" L 0.02 0.02 [in ³] 1.41 1.41 L 0.97 0.97 [in ³] 59.23 59.23 [L] 0.55 0.55	25 mm / 38 mm / 51 mm / 1" 1½" 2" [L] 0.02 0.02 0.02 [in ³] 1.41 1.41 1.41 [L] 0.97 0.97 0.97 [in ³] 59.23 59.23 59.23 [L] 0.55 0.55 0.55	25 mm / 38 mm / 51 mm / 63.5 mm / 1" 1½" 2" 2½" [L] 0.02 0.02 0.02 0.02 [in ³] 1.41 1.41 1.41 1.41 [L] 0.97 0.97 0.97 0.97 [in ³] 59.23 59.23 59.23 59.23 [L] 0.55 0.55 0.55 0.55	25 mm / 1" 38 mm / 1½" 51 mm / 2" 63.5 mm / 76.1 mm / 2½" 3" [L] 0.02 0.02 0.02 0.02 0.08 [in ³] 1.41 1.41 1.41 1.41 4.70 [L] 0.97 0.97 0.97 2.76 [in ³] 59.23 59.23 59.23 168.38 [L] 0.55 0.55 0.55 1.31	25 mm / 38 mm / 51 mm / 63.5 mm / 76.1 mm / 101.6 mm / 1" 1½" 2" 2½" 3" 4" [L] 0.02 0.02 0.02 0.02 0.08 0.08 [in ³] 1.41 1.41 1.41 1.41 4.70 4.70 [L] 0.97 0.97 0.97 2.76 2.76 [in ³] 59.23 59.23 59.23 168.38 168.38 [L] 0.55 0.55 0.55 1.31 1.31	25 mm / 1" 38 mm / 1½" 51 mm / 2" 63.5 mm / 76.1 mm / 2½" 101.6 mm / 4" 25 [L] 0.02 0.02 0.02 0.02 0.08 0.08 0.02 [in ³] 1.41 1.41 1.41 1.41 4.70 4.70 [L] 0.97 0.97 0.97 2.76 2.76 0.97 [in ³] 59.23 59.23 59.23 168.38 168.38 [L] 0.55 0.55 0.55 1.31 1.31 0.55	25 mm / 1" 38 mm / 1½" 51 mm / 2" 63.5 mm / 2½" 76.1 mm / 3" 101.6 mm / 4" 25 38 [L] 0.02 0.02 0.02 0.08 0.08 0.02 0.02 [n ³] 1.41 1.41 1.41 1.41 4.70 4.70 [L] 0.97 0.97 0.97 2.76 2.76 0.97 0.97 [n ³] 59.23 59.23 59.23 168.38 168.38 168.38 [L] 0.55 0.55 0.55 1.31 1.31 0.55 0.55	25 mm / 1" 38 mm / 1½" 51 mm / 2" 63.5 mm / 76.1 mm / 2½" 101.6 mm / 4" 25 38 50 [L] 0.02 0.02 0.02 0.08 0.08 0.02 0.02 0.02 [n ³] 1.41 1.41 1.41 1.41 4.70 4.70 [L] 0.97 0.97 0.97 2.76 2.76 0.97 0.97 0.97 [n ³] 59.23 59.23 59.23 168.38 168.38 1 1 [L] 0.55 0.55 0.55 1.31 1.31 0.55 0.55 0.55	25 mm / 1" 38 mm / 1½" 51 mm / 2" 63.5 mm / 2½" 76.1 mm / 3" 101.6 mm / 4" 25 38 50 65 [L] 0.02 0.02 0.02 0.02 0.08 0.08 0.02 0.02 0.02 [m³] 1.41 1.41 1.41 1.41 4.70 4.70	25 mm / 1" 38 mm / 1½" 51 mm / 2" 63.5 mm / 76.1 mm / 2½" 101.6 mm / 4" 25 38 50 65 80 [L] 0.02 0.02 0.02 0.08 0.08 0.02 0.02 0.02 0.08 [m³] 1.41 1.41 1.41 1.41 4.70 4.70

Burst seat clean nominal consumption

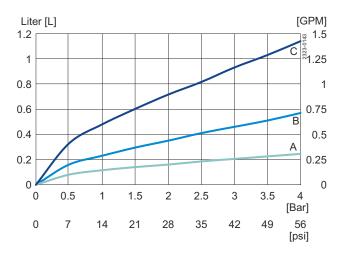


Figure 4. Unique Mixproof Process ISO25/DN25/1"

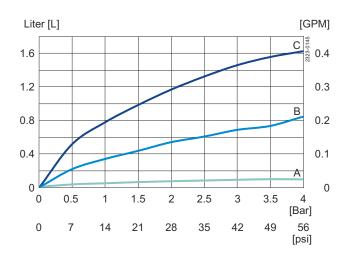


Figure 6. Unique Mixproof Process ISO51/DN50

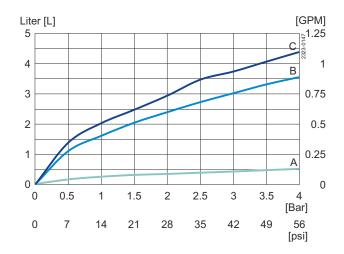


Figure 8. Unique Mixproof Process ISO76.1/DN80

A = Upper seat lift with sensor

B = Lower seat push

C = Upper seat lift without sensor

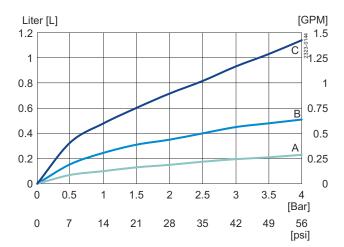


Figure 5. Unique Mixproof Process ISO38/DN40/11/2"

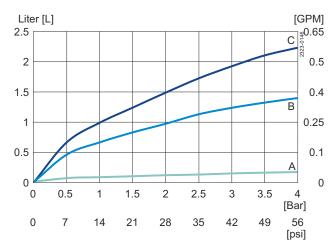


Figure 7. Unique Mixproof Process ISO63.5/DN65

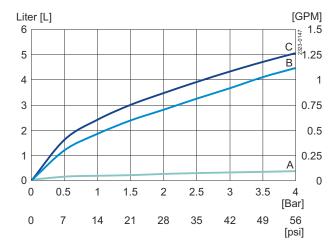
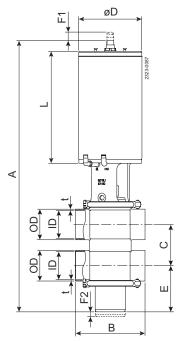



Figure 9. Unique Mixproof Process ISO101.6/DN100

Dimensions

(mm)												
Size	DN/OD						DN					
ISO/DIN	25	38	51	63.5	76.1	101.6	25	40	50	65	80	100
A	462	494	519	547	676	718	469	499	521	553	684	720
В	150	170	122	162	172	238	150	170	122	162	172	240
С	47.8	60.8	73.8	86.3	98.9	123.6	52	64	76	92	107	126
OD	25	38	51	63.5	76.1	101.6	29	41	53	70	85	104
ID	21.8	34.8	47.8	60.3	72.9	97.6	26	38	50	66	81	100
t	1.6	1.6	1.6	1.6	1.6	2	1.5	1.5	1.5	2	2	2
E	70.55	82.75	92	101	121	126	70.55	82.75	90	98	117	125
F1	30.5	30.5	30.5	30.5	43	43	30.5	30.5	30.5	30.5	43	43
F2	7	7	7	7	7	7	7	7	7	7	7	7
ØD	115	115	115	115	157	157	115	115	115	115	157	157
L	205	205	205	205	278	278	205	205	205	205	278	278
Weight (kg)	8.9	9.4	11.4	13.6	24.4	27.6	9.1	9.6	11.5	13.9	24.9	27.7

(inch)

Size	OD					
ISO/DIN	1"	1½"	2"	21⁄2"	3"	4"
A	18.19	19.45	20.44	21.55	26.60	28.27
В	5.91	6.69	4.80	6.38	6.77	9.37
С	1.88	2.39	2.91	3.40	3.89	4.87
OD	1	1.5	2.01	2.50	3.00	4.00
ID	0.86	1.37	1.88	2.37	2.87	3.84
t	0.06	0.06	0.06	0.06	0.06	0.08
E	2.78	3.26	3.60	3.97	4.75	4.97
F1	1.2	1.2	1.20	1.20	1.69	1.69
F2	0.28	0.28	0.28	0.28	0.28	0.28
ØD	4.54	4.54	4.54	4.54	6.20	6.20
L	8.06	8.06	8.06	8.06	10.94	10.93
Weight (lb)	19.6	20.7	25.2	30.0	53.9	60.9

This document and its contents are subject to copyrights and other intellectual property rights owned by Alfa Laval AB (publ) or any of its affiliates (jointly "Alfa Laval"). No part of this document may be copied, re-produced or transmitted in any form or by any means, or for any purpose, without Alfa Laval"s prior express written permission. Information and services provided in this document are made as a benefit and service to the user, and no representations or warranties are made about the accuracy or suitability of this information and these services for any purpose. All rights are reserved.

200008487-7-EN-GB